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LETTER TO THE EDITOR 

Eigenfunctions for SU(v)  particles with l/r2 interaction in 
harmonic confinement 
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t Department of Applied Physics, Osaka University. Sui@ Osaka 565, Japan 
$ Yukawa InstiUte for Themetical physics, Kyoto University, Kyoto 606, Japan 

Received 9 February 1994 

Abstract. We find a set of exau eigenfunctions which pmvide the energy spec" for the 
q u a "  N-body Calogem-Sutherland model for fermions or hsons with &!U(") spin de- 
of freedom moving in a harmonic conlinement potential. The eigenfnnctions are explicitly 
wnsrmctedasasimplepmductofthelas~w wavefunctionforthegmunds~teandtheHermite 
polynomials introduced m generate the excited stafes. Thc mmponding energy s p e c "  is 
given by a sum of the correlated gmund-state energy and of the excited-stme energy for SU(v) 
free pa~Wes in a harmonic well. 

Integable systems with inverse-square (l/r2) interaction in one dimension were introduced 
by Calogero [l] and Sutherland [2], and more recently extended to the spin chain by 
Haldane 131 and Shastry 141. Models with periodic boundary conditions have then been 
studied intensively and the corresponding wavefunctions have been constructed explicitly 
[5-131. 

For the l/rZ systems with harmonic confinement potential [2,10,14-1~, the formal 
algebraic structure has been clarified recently via the construction of appropriate annihilation 
and creation operators [lo, 141, which enables one to prove the integrability for a class of 
the SU(u) models with confinement [16]. Such an operator formalism is elegant, giving 
an answer about the spechum and the degeneracy of the energy levels. However, we 
still lack expressions for the eigenfunctions of excited states for the l / r 2  system with 
harmonic confinement. The systematic construction of eigenfunctions should also provide 
a microscopic foundation of the rcnormalized-harmonic oscillator hypothesis [18] which is 
based on a variant of the asymptotic Bethe ansatz method [2,3,8]. 

Several authors attempted to construct explicitly the wavefunctions for the excited states 
of the CalogeroSutherland model with confinement, but this problem has not been solved 
generally even for the singlecomponent case. Calogero [ 4 obtained early results for the 
eigenfunctions of the system containing N = 3 and N = 4 particles. Calogero's attempt 
to obtain the solution for the N-body system has left open the problem of finding an 
explicit expression for the eigenfunctions: a systematic construction of the polynomial 
solutions to the generalized Laplace equations has not been accomplished yet [l]. A special 
solution for N = 5 has been presented by Gambardella [19]. The formal approach using 
the operator algebra [lo, 141 yields expressions for wavefunctions that are simple only for a 
small number of particles in the system. It has indeed been claimed 1141 that the expressions 
quickly become cumbersome due to complicated sums in the definition of operators. Similar 
difliculties may happen if the wavefunctions for particles with internal degrees of freedom 
are constructed from the operators introduced by Minahan and Polychronakos [16]. 

03054470194Nno201+19..50 6 1994 IOP Publishiag Ltd E O 1  



E 0 2  Letter to the Editor 

The purpose of this letter is to construct explicitly a set of the exuct eigenfunctions for 
the N-body Calogerdutherland model where the particles with SU(u) internal degrees 
of freedom move in an external harmonic confining potential. It mms out that the 
eigenfunctions obtained here cover the full energy spectrum although they belong to a 
special set of complete eigenfunctions. To illustrate this approach, we start with the 
construction of wavefunctions for the singlecomponent case. We then turn to the case 
of particles with the internal SU(u) spin degrees of freedom, and present the eigenfunctions 
and the corresponding energy spectrum. 

k t  us introduce the Hamiltonian in units of h2/m for the inversesquare model of 
spinless particles confined by a harmonic potential $”xZ [1,2], 

where N is the total number of particles and h > 0 is a dimensionless constant of pair 
coupling. The upper (lower) sign in the interaction term holds for bosons (fermions). 

We first mall a characteristic feature of the wavefunction inherent in the l / r 2  models: 
the ground-state wavefunction is of the Jastrow type, expressed as a product of the 
Jastrow factor and Gaussian functions 121. It has been known that the construction of 
this wavefunction exhibits a remarkable similarity to that of Laughlin’s wavefunction for 
the fractional quantum Hall (FQH) states with the iilling l i p ,  qP = z P  x (Gaussians), 
where z is a Vandermonde determinant [m]. In the FQH states, it is further known that the 
wavefnnctions for excited states are obtained by multiplying an appropriate polynomial to 
the ground-state wavefunction [20]. One naturally expects that even for excited states, the 
construction of eigenfunctions for the l / r 2  models can be quite analogous to that for the 
FQH states. It was actually demonstrated that this is indeed the case for the systems with 
periodic boundary conditions [2-4,7,91. 

Based on these observations, we thus propose the following set of Jastrow-type ansatz 
eigenfunctions for the system of bosons and fermions described by the above Hamiltonian 
(U? 

(2) q(Xl,XZ. ..., XN) = IZIAZyQ,(Xl,XZ..,.,xN) 

where z = nj , i (x j  - xi) is the Vandennonde determinantal product, y = 0 (y  = 1) for 
bosons (fermions), and Q, is assumed to be a symmetric polynomial. The second factor zY 
is introduced to generate the symmetry (antisymmelsy) property of the wavefunction for the 
boson (fermion) case. Note that Y(h = 0) corresponds to a solution of the non-interacting 
case. Motivated by the analogy to the FQH states, let us further assume that ‘Z is a product 
of a polynomial F and a function G, namely 0 = FG. The function G is a product of 
Gaussim, 

N 
G ( x ~ ,  . . . , xN) = n e x p  

i=l 
(3) 

which can naturally take into account the effects of the harmonic confinement. The 
polynomial F introduced here, 
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is a h e a r  combination of Hermite polynomials Hmi with unknown amplitudes a,,,,..." 

the excitations are labelled by the quantum numbers in the polynomial F ,  mi = 0,1,2.. . 
(i = 1.2, . . . , N ) .  The sum in the definition of the polynomial F is taken over quantum 
numbers mi (i = 1,2, . . . , N) which satisfy mi = Z, where I is a given non-negative 
integer. 

We show that ansatz wavefunction (2) with (3) and (4) satisfies the SchrMiger equation 
HW = EY in the sector XI < x2 < . . . < X N .  The proof can easily be extended to the whole 
configuration space. The application of the Hamiltonian (1) on the ansatz eigenfunction (2) 
results in the foUowing expression, 

which should satisfy the condition of symmetry, a, ,... mr...mt..nN - - U,, ..m~...m~.,.,,,. Note that 

We would Like to eliminate the cross-term containing the derivatives of the function F. Such 
a requirement leads to the additional condition imposed on the amplitudes aml.,m# for any 
R < e, which is satisfied when the polynomial F contains two terms with the amplitudes 
related by 

(6) 

for any mk > 0 and me < Z. It is further required that the sum in the definition of the 
polynomial F is taken overall possible combinations of integers mi satisfying CL, mi = I. 
The conditional equation (6) is solved by the factorization of amplitudes a,,..,,, (with 
O! = I), 

- mtam, ... mt,.,m t...mN - (mt + l ) a m ,  . . .~~- ~...m~+l.. .m~ 

Consequently, the eigenfunction for the CalogeroSutherland-type model (1) of spinless 
particles moving in a harmonic potential can be written as 

The corresponding energy spectrum follows from (5). 

E(N; I )  = $%[(A + y ) N ( N  - 1) + NI + h W Z  (9) 

where a non-negative integer I labels the excitation. The ground-state wavefunction and 
the corresponding eigen-energy (obtained for Z = 0) reproduce the known exact results [Z]. 
Note that the case of non-interacting particles (both fermions and bosons) is achieved by 
A = 0. 

The energy spectrum (9) is a sum of the N-particle correlated ground-state energy 
and the specmum of N non-interacting fermions or bosons in a harmonic well, as should be 
expected [14]. For example, the excitation energy of the particle-hole type. which is labelled 
by a positive integer Z with fixed N, is independent of the interaction s-ngth A. Although 
the set of eigenfunctions (8) provides us with a special series of the eigenfunctions for N 
particles, it supplies d l  energy levels of the system, as can be seen when one compara the 
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energy spectrum (9) with the results deduced by other techniques [14]. Hence, the energy 
levels obtained from the wavefunction (8) cover all excitation energies. It is, however, still 
open to count the degeneracy of each level within the present approach. We note that one 
can employ other methods [I41 for counting the degeneracy. 

We now generalize the model for particles with SU(v) spin degrees of freedom. The 
integrability and the ground-state wavefunction (up to N = 6 particles) were shown for the 
model by Minahan and Polychronakos [16]. Recently, we have constructed the ground- 
state wavefunction for an arbitrary number of particles 1171. Using the approach outlined 
above, let us now obtain a set of excited-state wavefunctions and the energy spectrum for 
particles with SU(u) internal degrees of fieedom. The SU(u) integrable generalization of 
the Hamiltonian in units of P / m  takes the form [7,10,12] 

where the spinexchange operator P$ of particles i ,  j has been introduced. We propose the 
~a~trow-type ansatz eigenfunction, namely the trial function reads 

where the indices ut (I' = 1.2, . . . , N) denote the SU(u) spin of each particle. The exponent 
y is equal to 0 and 1 for bosons and fermions, respectively. The third factor is introduced 
to take into account the symmetry of SU(u) degrees of freedom. 

Here we make a brief comment on the wavefunction (11). As in other models with 
l / r2  interaction [2,7], for instance in the fermion case, the eigenfunction Y(A = 0, y = 1) 
is a solution for non-interacting SU(u) fermions in a harmonic well. So, the wavefunction 
(11) can be rewritten as Y = nj,, Ixj - x i l A Y ( i  = 0, y = 1). One can clearly see, from 
this expression, the analogy to Jain's construction [21] of the wavefunction for hierarchical 
PQH states in which the Jasbow factor is introduced to non-interacting electrons of filled 
Landau levels with the filling p. Furthermore, following the proof for the SU(2) case [17], 
it is easily checked that the eigenfunction Y is a product written as Y = FYc, where 
F is defined by (4) and (7), and Yc is the ground-state wavefunction of the Hamiltonian 
(10) for a given spin configuration. This decomposition implies that we are now looking 
for the eigenfunctions whose symmehy is the same as Yc, since a completely symmetric 
polynomial F does not change the symmetry property. 

It is now straightforward to show that the substitution of the hial function (11) into the 
Schrwnger equation with the Hamiltonian (10) yields the expression for the eigen-energy 

where the configuration of spins is denoted by the number of paaicles. NI, Nz. . . . , Nv 
Nc = N). The hial function (11) is therefore an eigenfunction of the Hamiltonian 

(10). The correlations via l / r z  interaction appear only in the ground-state energy for a given 
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spin configuration, EG = fhm&N(N - 1) + N i l .  The excitations do not include 
any effects of interactions, provided that the number of electrons, Ne, is kept fixed [18]. 
The level of the spin-independent particle-hole excitations is determined by the quantum 
number Z = ELl mi; the lowest-lying excitation is obtained for Z = 1, the next one for 
Z = 2, etc. The case of non-interacting fermions is achieved for h = 0, whereas for bosons 
the case of A = 0 corresponds to particles with an infinite hard core, as discussed in [2] and 
161. Notice that h in ow notation for the multicomponent model (10) corresponds to h - 1 
in the notation of [Z] and [6]. 

The s p e c m  of the Hamiltonian (1) or (10) is the same as the spectrum of non- 
interacting particles shifted only by the correlated ground-state energy obtained previously 
[17]. Comparing with the spectrum suggested in the hypothesis [ISJ, one can see that the 
energies of all quantum levels are produced directly from wavefunctions (1 1). As is the case 
for the other l / r2  models [3,13,22], the degeneracy of each energy level is expected to be 
given by that of non-interacting SU(u) particles, described by independent sets of quanhtm 
numbers mi, i = 1,2, . . . , N .  In order to figure out the problem of degeneracy and obtain the 
corresponding wavefunctions microscopically, it is desirable to analyse symmetry properties 
of the model in detail 114,161. In particular, we think that Yangian symmetry discussed 
in [22] may play a key role for the classification of the complete spectrum of the present 
SU(u) modeL 

In conclusion, we have presented a set of the excited-state wavefunctions for 
SU(v) generalization of the quantum CalogeroSutherland Hamiltonian with harmonic 
confinement. Although the present wavefunctions belong to a special subset of complete 
eigenfunctions, it is remarkable that the constructed set of eigenfunctions provides us exactly 
with all the energy levels for the excited states. 
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